Some wells are tested with deliverability tests, instead of PBUs, to assess productivity. This could result in a misleading well and reservoir performance, in particular with low to mid permeability reservoirs. As a matter of fact, there is no other alternative to PBU/PFO tests so as to get KH and skin under transient behaviour.
Complex deliverability tests are passed their due date, in particular with well testing. Experts in several majors agree: fancy deliverability tests are no longer run in well test operations, and for good reasons.
Different types of oil and gas deliverability tests
Some service companies still recommend an oil and gas deliverability test. This could include:
-
The flow-after-flow test:
This is an increasing or decreasing three step rate test.
This test assumes that pseudo-steady state is reached during each flow period so that the transient behaviour during one flow period is not propagated to the next flow period. Unless the permeability in the reservoir is high (100 mD plus), you won’t expect to reach pseudo-steady state after flowing a well for a couple of hours. As a result, for low to mid permeability reservoirs, this test cannot be performed in a reasonable time frame.
-
Isochronal test:
The operator flows the well at different rates for the same duration ∆T, each separated by a PBU test. Each shut-in needs to be long enough to reach the stabilized average reservoir pressure.
The flowing periods are of same duration ∆T, which could be of 3 hours for example. As the rate increases, the consecutive shut-in needs to be longer so as to reach the stabilized initial pressure or average reservoir pressure.
In practice for low to mid permeability reservoirs, this test is also not feasible since the shut-in duration would be too long to reach stabilized reservoir pressure. If too short, the results for this deliverability test on these types of reservoirs could be misleading.
The duration of this complex deliverability test could be shortened with the modified isochronal test with an increasing step rate test.
-
Modified Isochronal Test:
This is based on flow and shut-in periods of same duration ∆T.
The flow period duration ∆T needs to be long enough to at least reach radial flow regime so that the rate data at surface are representative of the reservoir and not dominated by wellbore storage effects. An earlier PBU analysis will help to improve the design of the deliverability test.
Not only this test requires a lot of logistics, but it will end up with a relationship between pressure and rate (IPR) which is independent of time. However, wells in low to mid permeability reservoirs are dominated by transient behaviour, i.e. by a relationship between pressure and rate WITH TIME. So complex deliverability tests won’t be too useful for these types of reservoirs.
Hi. Thanks for the post, very useful and informative.
With PBU we will get all the parameters required for IPR using either RS/Jones method or LIT method. But, here we need to assume drainage radius again, how to find that one using PBU?